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Abstract: A large proportion of total energy consumption is caused by buildings. Accurately predicting the heating and 

cooling demand of a building is crucial in the initial design phase in order to determine the most efficient solution from various 

designs. In this paper, in order to explore the effectiveness of basic machine learning algorithms to solve this problem, different 

machine learning models were used to estimate the heating and cooling loads of buildings, utilising data on the energy efficiency 

of buildings. Notably, this paper also discusses the performance of deep neural network prediction models and concludes that 

among traditional machine learning algorithms, GradientBoostingRegressor achieves better predictions, with Heating prediction 

reaching 0.998553 and Cooling prediction Compared with our machine learning algorithm HB-Regressor, the prediction 

accuracy of HB-Regressor is higher, reaching 0.998672 and 0.995153 respectively, but the fitting speed is not as fast as the 

GradientBoostingRegressor algorithm. 
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1. Introduction 

Predicting building energy consumption remains a 

challenging task because of the variety of factors that 

influence consumption, [1] such as the physical 

characteristics of the building, installed equipment, outdoor 

weather conditions and the energy use behaviour of the 

building's occupants [2, 3]. 

Physical modelling approaches and data-driven approaches 

are the two main methods used for predicting the energy 

consumption of buildings. For thorough energy modelling and 

analysis, physical models (sometimes called engineering 

techniques or white box models) rely on thermodynamic 

principles. EnergyPlus, eQuest, and Ecotect are a few 

examples of building energy modelling software that use 

physical models. [4] Based on specific architectural and 

environmental data, such as building construction 

specifications, operating schedules, HVAC design 

information, and climate, sky, and solar/shadow information, 

these kinds of software compute the energy consumption of 

buildings. At the time of the simulation, the user might not 

have access to all of this specific information. Poor prediction 

performance may be the result of inaccurate inputs. [5] 

There are numerous prediction techniques currently in use, 

including machine learning, and numerous papers have been 

released. There is, however, a dearth of research on the 

examination of machine learning and deep neural network 

methods side by side. To close this gap, we conduct a 

comprehensive comparison of deep learning and conventional 

machine learning methods in this study utilising actual and 

freely accessible datasets. [4] The results and future research 

objectives are reviewed. The assessment of prior research on 

energy prediction models for various building type parameters 

is the main objective. 

The essay is set up like follows: The training and test 

datasets, which have undergone pre-processing, are initially 

displayed. This is followed by a theoretical overview of 

conventional machine learning algorithms, metrics to evaluate 

the algorithms' strengths and limitations, a comparative 

assessment of the prediction outcomes, and a look ahead to 



2 Zeyu Wu and Hongyang He:  Traditional Machine Learning Models for Building Energy  

Performance Prediction: A Comparative Research 

Fulture development. [6] 

2. Data Collection and Processing 

The dataset used for the study in this paper was collected 

and processed by Athanasios Tsanas, a professor at the 

University of Oxford, UK, and consists of 12 different 

building shapes for energy analysis. These buildings differ in 

terms of parameters such as glazing area, glazing area 

distribution and orientation. Various settings were modelled 

as a function of the above characteristics to obtain 768 

building shapes. The dataset contains 768 samples and 8 

features, and we consider wall area, roof area, and glazing area 

as key indicators that can affect the energy load efficiency of 

both (heating and cooling) [5]. 

Information on the variables: including relative density 

surface area, wall area, roof area, total height, orientation, 

glazing area, glazing area distribution (variance) thermal load 

cooling load. [7] These eight characteristic factors do not have 

the same magnitude of influence on the energy performance of 

the building and the amount of data on these characteristic 

parameters varies slightly, as we can see from the following 

diagram which shows the table headings of the data set and the 

form of data collection. 

Table 1. Headings of the data set. 

 
Relative 

Compactness 

Surface 

Area 

Wall 

Area 

Roof 

Area 

Overall 

Height 
Orientation 

Glazing 

Area 

Glazing Area 

Distribution 

Heating 

Load 

Cooling 

Load 

0 0.7638 514.5 294.0 110.25 7.0 2 0.0 0 15.55 21.33 

1 0.9800 514.5 294.0 110.25 7.0 3 0.0 0 15.55 21.33 

2 0.9800 514.5 294.0 110.25 7.0 4 0.0 0 15.55 21.33 

3 0.9800 514.5 294.0 110.25 7.0 5 0.0 0 15.55 21.33 

4 0.9000 563.5 318.5 122.50 7.0 2 0.0 0 20.84 28.28 

Filling of missing data values is done using the mean method of filling, where the impact weights of the eight indicators are 

assumed to be equal, The figure below shows the characteristics of the 8 main indicators, which will help the reader understand 

the training data and the test data. [9] 

 

Figure 1. Six features, relative density surface area, wall area, roof area, total height, orientation. 

 

Figure 2. Two features, glazing area, glazing area distribution, Glazing area is a key indicator of the energy load that can be influenced. 

The data is divided into training set, validation set and test set with k-fold cross-validation, and the ratio of training set, 

validation set and test set is 7:1:2. The method of dividing the data set is random sampling, The following figure shows the 

Correlation matrix of the training data. 
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Figure 3. Correlation matrix of the training data. 

3. Method 

This chapter will use several types of machine learning 

algorithms that are currently in high use and have significant 

predictive efficiency, Decision Tree Algorithm, Random 

Forest Algorithm, Gradient Boosting Regression, all of which 

were significant at the time they were proposed and are based 

on data-driven predictive models. [10] In the field of building 

energy prediction, data collection involves collecting 

historical/available data for model training such as outdoor 

weather conditions and electricity consumption data. Data 

pre-processing can include data cleaning, data integration, 

data transformation and/or data reduction. Model training is 

the training of a model using a training dataset. Model testing 

is designed to evaluate the model using standard evaluation 

measures [8]. 

Decision trees have been a common approach to regression 

problems and the main focus of research in this area over the 

last few decades has been on the gradient boosting decision 

tree method (GBDT) based on the one proposed in. There are 

several open source packages that implement the GBDT 

algorithm (for both classification tasks and regression tasks). 

While the core ideas remain unchanged, these packages focus 

mainly on speed-up, parallelisation, large-scale dataset 

processing and robust training, whereas this paper uses a 

decision tree regression model (DTR) and a grid search 

(GridSearchCV) to find the best combination of 

hyperparameters, GridsearchCV is a tuning process that uses 

hyper parameterisation to determine the optimal values for a 

given model. GridsearchCV performs an exhaustive search for 

a specified set of parameters. This method is computationally 

expensive, but produces good results [11, 12]. 

The decision tree consists of decision nodes, leaf nodes and 

the depth of the decision tree The decision tree is built based 

on information gain and the first step is to calculate the 

information entropy of the root node, which is calculated by 

the following formula: 

���� � �∑�	

�  
�log�	
�            (1) 

The information gain of the attributes is then computed, 

and the search for suitable attribute nodes is continued by 

repeating the previous approach. [11] 

The algorithm is called the random forest algorithm 

because it combines multiple decision trees, with each 

dataset being selected at random with a random set of 

features selected as input. The algorithm first assumes that 
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the training set T is of size N, the number of features is M, 

and the size of the random forest is K. [10] The size of the 

random forest is traversed K times: a new sub-training set D 

is sampled N times from the training set T with put-back 

sampling, and m features are randomly selected, where m < 

M. Using the new training set D and the m features, a 

complete decision tree is learned to obtain the random forest. 

[13, 14] 

 

Figure 4. Correlation matrix of the training data. 

Random forests reduce variance by averaging over many 

noisy but approximately unbiased trees, [15] thereby 

improving prediction accuracy. The variance of a random 

forest with a total number of trees (K) is 

��� � 
��

�
��                (2) 

where σ
2
 denotes the variance of individual trees, ρ denotes 

the correlation between trees, and M is the total number of 

trees in the set. Clearly, by increasing the total number of trees, 

M, the second term tends to zero. Thus, the variance of a 

random forest depends on three things [17, 18]: 

The correlation ρ between any pair of trees: reducing the 

correlation reduces the total variance. This can be achieved by 

randomly selecting v from the p variables to split at each split 

node when growing trees on the bootstrap dataset. Reducing v 

reduces the correlation between trees and the strength of 

individual trees, and vice versa. Therefore, the optimal value 

of v needs to be found for a particular dataset. [16] 

Variance per tree σ 
2
, or in other words, strength per tree: 

strengthening the performance of each tree reduces the total 

variance of the model. 

Total number of trees M: The second term of the equation 

can be reduced by increasing M. [19] Therefore, we should 

train a sufficient number of trees to ensure that the second 

term of the equation becomes zero. 

In general, random forests are based on the idea of bagging, 

but with the diversity of each tree forced by random feature 

selection. The theoretical background of Random Forests 

supports parallel computing and thus its training can be 

accelerated by parallel computing. The prediction performance 

of a random forest is influenced by three main factors: the 

correlation between individual trees, the performance of each 

tree and the total number of trees [20, 21]. 

Gradient boosting regression (GBR) is a technique that 

learns from its mistakes, and unlike bagging, the boosting 

method sequentially generates the underlying model. By 

focusing on these difficult-to-estimate training cases, 

prediction accuracy is improved by developing multiple 

models in sequence. During the boosting process, examples 

that are difficult to estimate using the previous base model 

appear more frequently in the training data than examples that 

are correctly estimated. Each additional base model is 

designed to correct the errors made by its previous base model. 

[22] 

GBR proposes a modification to the gradient boosting 

method by using a fixed size regression tree as the base model. 

[23] 

Assume that the number of leaves per tree is J. Each tree 

divides the input space into J disjoint regions R1m, R2m,..., Rjm 

and predicts the constant value b jm for region R jm. The 

regression tree can be formally represented as 

����� � ∑�	

�  ���� � ∈ "��#          (3) 

Replacing ����$� in the generic gradient boosting method 

with a regression tree, the model update equation and gradient 

descent step 

%���� � %��
��� � �������           (4) 
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�� � argmin� 	∑$	

+  , -$ , %��
��$� + �����$�#                             (5) 

Becoming: 

%���� = %��
��� + ∑�	

�  ������ � ∈ "��#                               (6) 

�� = argmin� 	∑$	

+  , /-$ , %��
��$� + ∑�	


�  ����� � ∈ "��#0                        (7) 

A separate best ρjm is used for each region Rjm and the bjm can be discarded. The model update rule becomes: 

%���� = %��
��� + ∑�	

�  ���� � ∈ "��#                                 (8) 

��� = argmin� 	∑12∈345  , /-$ , %��
��$� + ∑�	

�  �� � ∈ "��#0                         (9) 

4. Experimental Assessment Indicators 

In order to compare the performance between algorithms, 

metrics are essential to assess the strengths and weaknesses of 

the models. 

The mean absolute error refers to the average of the distance 

between the model prediction and the true value of the sample 

[21]. The formula for this is shown below: 

Mean Absolute Error (MAE) = 

+∑$	


+  6-predict,$ − -data,$6 (10) 

R² is the goodness of fit, which is the degree to which the 

regression line fits the observations. In statistics for line 

regression analysis of variables, when least squares is used for 

parameter estimation, R² is the ratio of the regression sum of 

squares to the total sum of squares of deviations [22], 

indicating the proportion of the total sum of squares of 

deviations that can be explained by the regression sum of 

squares, the larger this proportion the better. [23] The more 

accurate the model, the more significant the regression effect. 

r-squared is between 0 and 1, the closer to 1, the better the 

regression fit, and the better the fit is generally considered to 

be for models over 0.8. 

R − Squared �R�� = 1 − ∑29:
;   <predict,2�<data,2#

=

∑29:
;   <data,2�<data #

=     (11) 

One advantage of MAE over MSE is that MAE is less 

sensitive to predicting data outliers and is more inclusive: 

Mean Squared Error (MSE) = 

+∑$	


+   -predict,$ − -data,$#
�
 (12) 

We generally use Accuracy and Error rate to evaluate the 

model as a whole, from a holistic perspective. [25] 

Error Rate �>$� = -data,$ 1 − -data,$# -predict,$ − -data,$#  (13) 

5. Experiments and Results 

The experimental environment was based on the Pytorch 

11.0 framework, CUDA 11.3 and CUDNN 8.2, and the 

training model was based on an NVIDIA GeForce RTX 3060 

(12 GB). For DecisionTreeRegressor prediction, the 

minimum sampling interval min_samples_split was 

initialized to 15, the maximum depth to 6, the maximum 

number of leaf ends to 31, and the minimum number of 

sampled leaves to 6. The optimal hyperparameters were 

determined by GridsearchCV with 'max_depth' of 6, 

'max_leaf_ nodes' of 31, 'min_samples_leaf' of 5, and 

'min_samples_split' of 17 [26]. 

R2 is an indispensable metric when measuring the fit of 

DecisionTreeRegressor, Random Forests and Gradient 

Boosting Regression. The DTR algorithm has an 

R-Squared of 0.991543907727448 for the training dataset 

and an R- Squared for the test data set is 

0.973711991905928. The random forest algorithm 

initialises the hyperparameters 'n_estimators' at [350, 400, 

450], 'max_features' at [1, 2], 'max_depth' at [85, 90, 95], 

and the best hyperparameters obtained by the CV 

algorithm are 'max _depth' is 90, 'max_features' is 1, 

'n_estimators' is 450, and it is worth noting that the 

R-Squared for the training dataset of the Random Forest 

algorithm is 0.991543907727448 The R-Squared for the 

test dataset is 0.973711991905928. Gradient Boosting 

Regression has one more hyperparameter subsample than 

the above two algorithms. In this experiment, we set the 

downsampling to 1.0 and the R-Squared of the training 

dataset is 0.998672666920205. 

The R-Squared of the test dataset is 0.9914370717646062. 

From the data representation of R-Squared alone the 

prediction fit of Gradient Boosting Regression is the best, 

HB-Regressor has 6 hidden layers, of which the first layer 

has 180 neurons as input and the activation function is RULE, 

the RULE function can well eliminate the gradient 

disappearance problem: ReLU has a constant gradient of 0 

for inputs greater than The gradient of ReLU is constant at 1 

when the input is greater than 0, thus avoiding the training 

difficulties caused by the gradient disappearance problem, 

and the number of iterations set is 10000 [26]. 

The table below shows the prediction accuracy from the 

heating training set, the prediction accuracy from the heating 

test set, the prediction accuracy from the cooling training set, 

the prediction accuracy from the cooling test set and the 

R-Squared index. 
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Table 2. Algorithm comparison. 

 Model Train_Heating Test_Heating Train_Cooling Test_Cooling R2 

0 DecisionTreeRegressor 0.994803 0.995168 0.967655 0.959112 0.973711 

1 RandomForestRegressor 0.998695 0.991333 0.996960 0.973201 0.991543 

2 GradientBoostingRegressor 0.999735 0.998553 0.998988 0.991905 0.991437 

3 HB-Regressor 0.999821 0.998672 0.997545 0.995153 0.994384 

 

We can see that the prediction accuracy of HB-Regressor 

on the heating training set, and the prediction accuracy on the 

heating test set are slightly higher than the other three machine 

learning algorithms, but the prediction accuracy on the test set 

is 99.8672% slightly lower than the accuracy on the training 

set, and the fit of HB-Regressor is the most excellent, reaching 

99.4384%, and the HB- Regressor is excellent overall, but the 

prediction accuracy on the cooling training dataset is slightly 

worse than that of the GBR algorithm. 

The graph below shows the predicted versus true value 

curves for the cooling and heating data for HB-Regressor. [24] 

The predicted and true value curves are coloured differently 

and we can see that the predicted values are correct in most 

cases. As the forecasting model calculates the heating demand 

based on the input of the data time, the forecast range becomes 

a key parameter for the accuracy of theestimation using 

measured or forecast data. 

 

Figure 5. Heating test and predicted data/cooling test and predicted data. 

6. Discussion 

Based on the analysis of the case studies in this research and 

the methodologies used there, machine learning deep network 

prediction methods outperformed techniques like decision 

trees, random forests, etc. in terms of accuracy. This could be 

the outcome of the input selection procedure, which disregards 

the historical lags of the input variables. The use of such lags 

may be advantageous for prediction techniques, which 
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frequently rely on recent and historical data. Real-time access 

to the measured data is necessary in this situation. Although 

predictive methods perform better, they have the drawback of 

requiring a lot of data to support them, much of which may not 

be readily accessible in real life. Prediction techniques that rely 

on the current time step value nonetheless perform well 

enough with such an input set of data [18]. 

All ML models seem to have acceptable target variable 

errors on the test data when focusing on prediction error. 

Given each application, the deep learning and updated 

tree-based models seem to be close to the low end of the 

error range. However, one of the best performing algorithms 

in this study was also discovered to be the HB-Regressor. 

The case study may not have explored the latency of the 

inputs and/or the potential length of the dataset, which may 

have better highlighted the advantages of the deep learning 

approach. As a result, the differences seen across the test 

dataset appear to be small. 

Since the 1990s, numerous studies have created various 

forecasting models for energy use in buildings. Physical 

approaches and data-driven methods are the two basic 

categories into which these techniques fall. The physical 

technique, which is considered the classic method used in 

the design phase for building energy evaluation, is 

primarily based on the use of energy modelling tools. 

Support vector machines (SVM), random forests (RF), and 

other machine learning (ML) techniques, which need 

fewer construction parameters, are frequently used in 

data-driven methodologies. Furthermore, because findings 

can be obtained quickly, data-driven solutions have been 

found to be more accurate and efficient. Decision trees 

(DT), artificial neural networks (ANN), and support vector 

machines (SVM), to mention a few, were some of the most 

efficient techniques used. These algorithms have all 

occasionally performed better than one another. It was 

done to compare various models, including the multilayer 

perceptron ANN and SVM. It was determined that ANNs 

perform better in predicting energy use than SVMs. 

Additionally, feature selection and hyperparameter tuning 

are significant factors that frequently have an impact on 

the performance of ML models. The model's findings are 

significantly impacted by this. 

7. Future Work 

Future research work could also explore the application of 

other types of machine learning algorithms in energy 

consumption prediction. For example, deep learning 

algorithms have been shown to outperform other machine 

learning algorithms in many other areas (e.g. image 

classification and multimodal data analysis), but have not 

been fully investigated in the area of building energy 

consumption prediction. 

As new data-driven models are developed, sharing more 

information about the development process and purpose, 

validation and reusability of these models is essential to 

avoid unnecessary duplication of research efforts. Some 

important model information (for example, the purpose of the 

prediction) is sometimes not reported or not adequately 

described. Insufficient information provides limited guidance 

on the applicability of certain models to new contexts, which 

may inhibit model reusability [27]. 

8. Conclusion 

It is obvious that a high performance ML model can be 

developed to forecast building energy use at the design stage 

given the high accuracy in this study. The ability to estimate 

building energy use has been shown through previous 

research. There isn't a recognised top ML model during the 

design phase, though. As they can provide energy 

performance results in just a few seconds, machine learning 

models are far more effective than conventional simulation 

techniques. This has been proven in numerous earlier 

investigations. However, no research has been done to create 

models for the building design phase by implementing 

feature selection methods and hyperparameter tuning a 

variety of algorithms. Accuracy and R Square measures were 

used to assess four base models. 

In terms of predicting building energy performance, 

Gradient Boosting (GB) fared better than other conventional 

machine learning models. This study compared different 

machine learning models for predicting energy performance, 

and the results showed that integrated deep learning models 

outperformed other models that could support their liability 

to produce high-quality results because they were trained on 

a variety of algorithms that were theoretically similar to the 

theory. These results, however, go against some previous 

studies where the GBR algorithm fit produced superior 

prediction accuracy at lower levels. The findings 

demonstrated that the GBR algorithms lacked both 

performance and computational efficiency. However, this is 

explained by the idea that GBR algorithms perform better in 

small datasets whereas the deep learning algorithm HB 

performs better in large datasets. 
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