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Abstract: This paper studies various results on vertex colorings of simple connected graphs, chromatic number, chromatic 

polynomials and some Algebraic properties of chromatic polynomials. Results were obtained on the roots of chromatic 

polynomials of simple connected graphs based on Read’s conjecture. The chromatic number of every graph is the minimum 

number of colors to properly color the graph. Chromatic polynomial of a graph is a polynomial in integer and the leading 

coefficient of chromatic polynomial of a graph of order n and size m is always 1, whose coefficient alternate in sign. Through the 

application of famous graph theorem (the hand shaking lemma) by whiskey which states that: “the order of a graph twice its size”. 

Hence, every graph has a chromatic polynomial but not all polynomials are chromatic. For example, the polynomial λ
5
 − 11 λ

4
 + 

14 λ
3
 − 6 λ

2
 + 2 λ is a polynomial for a graph on five vertices and eleven edges which does not exists. Because the maximum 

number size for a graph of order five is ten. The paper equally gave some practical applications of Vertex coloring in real life 

situations such as scheduling, allocation of channels to television and radio stations, separation of chemicals and traffic light 

signals.  
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1. Introduction 

A graph G is a finite nonempty set V of objects called 

vertices (the singular is vertex) together with a set E of 

2-element subsets of V called edges. Vertices are sometimes 

called points or nodes, while edges are sometimes referred to 

as lines or links. Each edge {u, v} of V is commonly denoted 

by uv or vu. If e = uv, then the edge e is said to join u and v. 

The number of vertices in a graph G is the order of G and the 

number of edges is the size of G. We often use n for the order 

of a graph and m for its size. To indicate that a graph G has 

vertex set V and edge set E, we sometimes write G= (V, E). 

To emphasize that V is the vertex set of a graph G, we often 

write V as V (G) or VG. For the same reason, we also write E 

as E (G) [1].  

A graph of order 1 is called a trivial graph and so a 

nontrivial graph has two or more vertices. A graph of size 0 is 

an empty graph and so a nonempty graph has one or more 

edges. Graphs are typically represented by diagrams in which 

each vertex is represented by a point or small circle (open or 

solid) and each edge is represented by a line segment or 

curve joining the corresponding small circles. A diagram that 

represents a graph G is referred to as the graph G itself and 

the small circles and lines representing the vertices and edges 

of G are themselves referred to as the vertices and edges of G. 

The first results about graph coloring deals almost 

exclusively with planar graphs in the form of the coloring of 

maps. While trying to color a map of the counties of England, 

Francis Guthrie postulated the four color conjecture, noting 
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that four colors were sufficient to color the map so that no 

regions sharing a common border received the same color 

[9]. 

 Guthrie’s brother passed on the question to his 

mathematics teacher Augustus de Morgan at University 

College, who mentioned it in a letter to William Hamilton. 

Then Arthur Clayey raised the problem at a meeting of the 

London Mathematical Society. The same year, Alfred Kempe 

published a paper that claimed to establish the result, and for 

a decade the four color problem was considered solved. For 

his accomplishment Kempe was elected a Fellow of the 

Royal Society and later President of the London 

Mathematical Society. Heawood pointed out that Kempe’s 

argument was wrong. Heawood himself modified that 

thought [10]. 

2. Vertex Colorings 

The vertices of a graph G can also be classified using 

colorings. These colorings tell that certain vertices have a 

common property (or that they are similar in some aspect), if 

they share the same color. In this paper, we shall concentrate 

on proper vertex colorings, where adjacent vertices get 

different colors. In graph labeling usually integer number is 

given to an edge, or vertex, or to both i.e. to an edge and to a 

vertex of a graph. Similarly, in graph theory, we use some 

colors to label the edges or vertices. But there are some 

restrictions on using colors. The problem is, if we have n 

colors, then we have to find a way for coloring vertices such 

that no two adjacent vertices have the same color. There exists 

some other graph coloring problems also, for example, Edge 

Coloring and Face coloring. In edge coloring, not a single 

vertex is connected to two edges which are having same color. 

And face coloring is related to Geographical map coloring. 

Edge coloring and face coloring problems can be transmitted 

to vertex coloring [4]. 

2.1. Vertex Coloring 

A function a: VG→ K is a vertex coloring of G by a set K of 

colors. A graph is said to be k vertex colorable or (k-colorable) 

if is possible to assign one color from a set of k colors to each 

vertex such that no two adjacent vertices have the same color. 

If the graph G is k colorable, but not (k−1) colorable we say 

that G is k chromatic graph. 

2.2. Color Class 

A color class in vertex coloring of a graph G is a subset of 

VG containing all the vertices of a given color. 

2.3. Proper Vertex Coloring 

A proper vertex coloring of a graph G is a vertex coloring 

such that the end points of each edge are assigned two 

different colors [8]. 

Remark 1: 

Quite commonly, it is implicit from context that the color 

creations are proper in which case each color class is an 

independent set of vertices. Example is the vertex coloring 

shown below which demonstrates that the graph G is 

4-colorable [7]. 

 

Figure 1. Proper vertex 4-coloring of a graph G. 

2.4. (Vertex) Chromatic Number 

The vertex chromatic number of a graph G, denoted as χ (G) 

is the minimum number of different colors require for a 

proper vertex-coloring of G. a graph G is (Vertex) 

k-chromatic if χ (G)=k. 

The 3-coloring below shows that the graph G is 

3-colorable, which means that χ (G) ≤ 3. 

However the graph G contains three mutually adjacent 

vertices and hence is not 2-colorable. Thus G is three 

chromatic [5]. 

 
Figure 2. A proper 3-coloring of the graph G. 

Proposition 1: let H be a subgraph of G. then χ (G) ≥ χ ( H) 

Proof: whatever colors are used on the vertices of 

subgraph H in a minimum coloring of graph G can also be 

used in a coloring of H by itself. 

The Join G+H of the graph G and H are obtained from the 

graph union G ∪ H by adding an edge between each vertex 

of G and each vertex of H. 

Proposition 2: the join of G and H has chromatic number χ 

(G + H) = χ (G) + χ (H). 

Proof: lower bound. In the join G+ H, no color used on the 

graph G can be the same as a color used on the subgraph H, 

since every vertex of G is adjacent to every vertex of H. since 

χ (G) colors are required for subgraph G and χ (H) colors are 

required for subgraph H, it follows that χ ( G + H) ≥ χ (G) + χ 

(H). 

Upper Bound: Just use any χ (G) colors to properly color 

the subgraph G of G + H, and use χ (H) different colors to 

color the subgraph H. 
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2.5. Chromatic Polynomials (Chronomials) 

During the period that the Four Color Problem was 

unsolved, which spanned more than a century, many 

approaches were introduced with the hopes that they would 

lead to a solution of this famous problem. Birkhoff (1912) 

defined a function P (M, λ ) that gives the number of proper 

λ-colorings of a map M for a positive integer λ. As we will 

see, P (M, λ) is a polynomial in λ for every map M and is 

called the chromatic polynomial of M. Consequently, if it 

could be verified that P (M, 4) > 0 for every map M, then this 

would have established the truth of the Four Color 

Conjecture. Whitney (1932) expanded the study of chromatic 

polynomials from maps to graphs. While Whitney obtained a 

number of results on chromatic polynomials of graphs and 

others obtained results on the roots of chromatic polynomials 

of planar graphs, this did not contribute to a proof of the Four 

Color Conjecture. Renewed interest in chromatic 

polynomials of graphs occurred. Read (1968) wrote a survey 

paper on chromatic polynomials. For a graph G and a 

positive integer λ, the number of different proper λ-colorings 

of G is denoted by P (G, λ) and is called the chromatic 

polynomial of G. Two λ-colorings c and c′ of G from the 

same set {1, 2,..., λ} of λ colors are considered different if c 

(v) c′(v) for some vertex v of G. Obviously, if < λ (G), 

then P (G, ) = 0 [5]. 

There are some classes of graphs G for which P (G, λ) can 

be easily computed. 

Theorem 1. for every positive integer λ, 

(a) P (Kn, λ ) = ( − 1)( λ− 2) · · · (λ- n + 1) = 
(n)

, 

(b) P (��n, λ) =
n
. 

In particular, if ≥ n in for every positive integer, 

P (Kn, ) = (− 1)(− 2) · · · (− n + 1) = (n), then P (Kn, λ)= λ 
(n) = λ!/( λ-n)! 

We now determine the chromatic polynomial of C4 in 

Figure 3, There are λ choices for the color of v1. The vertices 

v2 and v4 must be assigned colors different from that assigned 

to v1. The vertices v2 and v4 may be assigned the same color 

or may be assigned different colors. If v2 and v4 are assigned 

the same color, then there are λ −1 choices for that color. The 

vertex v3 can then be assigned any color except the color 

assigned to v2 and v4. Hence the number of distinct 

λ-colorings of C4 in which v2 and v4 are colored the same is λ 

(λ − 1)
2
. 

If, on the other hand, v2 and v4 are colored differently, then 

there are λ− 1 choices for v2 and λ − 2 choices for v4. Since v3 

can be assigned any color except the two colors assigned to 

v2 

 

Figure 3. The Chromatic polynomial of C4. 

and v4, the number of λ -colorings of C4 in which v2 and v4 are 

colored differently is λ (λ − 1)( λ − 2)
2
. Hence the number of 

distinct λ -colorings of C4 is 

P (C4, ) = λ (λ − 1)
2
 + λ (λ − 1)( λ − 2)

2
 

= (λ − 1) (λ
2
− 3 λ + 3) 

= λ
4
−4 λ

3
 + 6 λ

2
− 3 λ

 

= (λ - 1)
4
 + (λ− 1). 

Theorem 2: The lead coefficient of P (G, λ ) is always 1. 

Proof: The only partition that contributes to the lead 

coefficient is the one with n parts, giving an addend of λ ( λ –

1)…( λ –n+1) where the coefficient of λ 
n
 is 1. 

Theorem 3: Let G be a graph of order n and size m. Then P 

(G, λ ) is a polynomial of degree n with leading coefficient 1 

such that the coefficient of λ 
n−1

 is − m, and whose coefficients 

alternate in sign. 

Proof: We proceed by induction on m. If m = 0, then G= Kn 

and P (G, λ) = λ 
n
, as we have seen. Then P (Kn, λ) = λ 

n 
has 

the desired properties. Assume that the result holds for all 

graphs whose size is less than m, where m≥ 1. Let G be a 

graph of order m and let e = uv an edge of G. By Corollary, 

Let G be a graph containing adjacent vertices u and v and let 

F be the graph obtained from G by identifying u and v. Then 

P (G, ) = P (G− uv, ) − P (F, λ). 

P (G, λ) = P (G− e, λ) − P (F, λ), 

Where F is the graph obtained from G by identifying u and 

v. Since G − e has order n and size m− 1, it follows by the 

induction hypothesis that 

P (G− e, λ) = a0 λ 
n
+ a1 λ 

n−1
+ a2 λ 

n−2
+ · · · + an−1 λ + an, 

Where a0 = 1, a1 = −(m − 1), ai ≥ 0 if i is even with 0 ≤ i≤ 

n, and ai≤ 0 if i is odd with 1 ≤ i≤ n. Furthermore, since F has 

order n − 1 and size m′, where m′ ≤ m− 1, it follows that 

P (F, λ) = b0 λ 
n−1

 + b1 λ 
n−2

 + b2 λ 
n−3

 + · · · + bn−2 λ + bn−1, 

where b0 = 1, b1 = − m′, bi≥ 0 if i is even with 0 ≤ i≤ n −1, 

and bi≤ 0 if i is odd with 1 ≤ i≤ n− 1. Let G be a graph 

containing adjacent vertices u and v and let F be the graph 

obtained from G by identifying u and v. Then 

P (G ) = P (G− uv, ) − P (F, ). 

P (G, λ) = P (G− e, λ) − P (F, λ) 

= (a0 λ 
n
 + a1 λ 

n−1
 + a2 λ 

n−2
 + · · · + an−1 λ + an) – 

(b0 λ 
n−1

 + b1 λ 
n−2

 + b2 λ 
n−3

 + · · · + bn−2 λ + bn−1) 

≠ λ
λ

λ λ λ
λ

λ

λ
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= a0 λ 
n
 + (a1− b0) λ 

n−1 
+ (a2− b1) λ 

n−2
 + · · · 

+ (an−1− bn−2)_ + (an− bn−1). 

Since a0 = 1, a1−b0 = −(m−1)−1 = −m, ai−bi−1≥ 0 if i is 

even with 2 ≤ i≤ n, and ai−bi−1 ≤ 0 if i is odd with 1 ≤ i ≤ n, 

P (G, λ ) has the desired properties and the theorem follows 

by mathematical induction. 

Suppose that a graph G contains an end-vertex v whose 

only neighbor is u. Then, of course, P (G− v, λ) is the number 

of λ -colorings of G− v. The vertex v can then be assigned 

any of the λ colors except the color assigned to u. This 

observation gives the following. 

Theorem 4: If G is a graph containing an end-vertex v, 

then 

P (G, λ) = (λ − 1) P (G− v, λ). 

One consequence of this result is the following. 

Corollary 5: if T is a tree of order n≥ 1, then 

P (T, λ) = λ (λ − 1)
n−1.

 

Proof: We proceed by induction on n. For n = 1, T = K1 

and certainly P (K1, λ ) = λ. Thus the basis step of the 

induction is true. Suppose that P (T′, λ) = λ (λ − 1)
n−2

 for 

every tree T′ of order n −1 ≥ 1 and let T be a tree of order n. 

Let v be an end-vertex of T. Thus T−v is a tree of order n −1. 

By induction hypothesis, 

P (T, λ ) = (λ − 1)P (T− v, λ ) = (λ − 1) [λ (λ − 1)
n−2

] = λ (λ 
− 1)

n−1
, as desired [5]. 

2.6. Some Algebraic Properties of Chromatic Polynomials  

Let G be a graph and λ be the set of colors to color G
 

1. The lead coefficient of P (G, λ) is always 1. 

a) The coefficient of λ 
n-1 

in P (G, λ) is the negative of 

the number of edges. 

2. The constant term, i.e. the coefficient of 1 in P (G, λ) is 

always zero. 

3. The coefficient of λ in P (G, λ) is non-zero if and only if 

G is connected. 

4. The coefficients of the chromatic polynomial alternate 

in sign. That is, for the coefficient am of λ
m
 we have am ≥ 

0 if n  m (2) and am≤ 0 otherwise. 

5. The chromatic polynomial has no real root greater than 

n–1. Every two trees of the same order are 

chromatically equivalent. It is not known under what 

conditions two graphs are chromatically equivalent in 

general [5].  

A graph G is chromatically unique if P (H, λ) = P (G, λ) 

implies that H∼= G. Here too it is not known under what 

conditions a graph is chromatically unique. 

It has been conjectured by Read (1968) that the sequence of 

coefficients of any chromatic polynomial must first raise in 

absolute value and then fall, in other words, that no coefficient 

may be flanked by two coefficients having greater absolute 

value. However, even if true, this condition, together with the 

conditions of all the theorems above, would not be enough. 

Consider the polynomial λ 
5
 − 11 λ 

4
 + 14 λ 

3
 − 6 λ 

2
 + 2 λ. If 

this is the chromatic polynomial of a connected graph G, G 

should have five vertices and eleven edges. But the number of 

edges in a connected simple graph of order 5 is at least four 

and at most ten. So there is no graph for which this given 

polynomial is chromatic [6]. 

3. Applications of Vertex Colorings 

Application 1 

University course scheduling 

Suppose that the vertices of a simple graph G represent the 

courses at a university in this model, two vertices are adjacent 

if and only if at least one student preregisters for both of the 

corresponding classes. Clearly, it would be undesirable for 

two such courses to be scheduled at the same time. Then the 

vertex-chromatic number χ (G) gives the minimum number 

of time periods in which to schedule the classes so that no 

student has a conflict between two courses [8]. 

Application 2 

Allocation of channels to television and radio stations 

Assume that there are k possible channels (frequencies) 

available for use by the n television stations in a certain 

country. As is well known, stations that are near to each other 

cannot use the same channel without causing interference. 

Thus, given any two stations, it may or may not be the case 

that they can use the same channel. The problem is to allocate 

a channel to each station in such a way that any two stations 

which need to have different channels get different channels. 

Let us construct a graph G whose nodes represent the 

stations. We join two nodes by an edge if and only if the 

corresponding stations cannot use the same channel. Then any 

allocation of channels is, effectively, a coloring of G in k 

colors, and if it is proper then the condition about nearby 

stations being given different channel is satisfied. Thus the 

problem reduces to that of coloring a graph, and the chromatic 

polynomial will give the number of ways of allocating the k 

channels. If the vertices of a graph G represent radio stations, 

and two vertices are adjacent if the stations are close enough to 

interfere with each other, a coloring can be used to assign 

non-interfering frequencies to the stations [2].  

Application 3 

Separating combustible chemicals 

Suppose that the vertices of a graph represent different 

kinds of chemicals needed in some manufacturing process. 

For each pair of chemicals that might explode if combined, 

there is an edge between the corresponding vertices. The 

chromatic number of this graph is the number of different 

storage areas required so that no two chemicals that mix 

explosively are mixed together [3]. 

Application 4 

If the vertices of a graph represent traffic signals at an 

intersection, and two vertices are adjacent if the corresponding 

signals cannot be green at the same time, a coloring can be 

used to designate sets of signals that can be green at the same 

time [7]. 
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4. Conclusion 

A significant way of finding the minimum number of colors 

to color a graph is by means of vertex coloring. Scheduling 

has been a means of arranging project and time-tabling which 

allows participants to perform their activities without any 

clash. The structures are easily presented in the form of a 

graph. This also is applicable in communication networks (T. 

V. and Radio stations). Every simple graph has a chromatic 

polynomial; two different graphs can have the same 

polynomial. Not all polynomials are chromatic. 

Among all essentials for human existence, the need to 

interact (on reliable and clear information) with others ranks 

just below our need to sustain life, likewise our daily activities 

are scheduled accordingly since some activities cannot be 

performed at the same time (Mutually exclusive). The need for 

proper time-tabling to avoid clash is as well very important. 

The advancement in communication technology that led to the 

invention of alternative communication channels uses the 

same mechanism to avoid interference for a reliable 

communication network. The use of vertex coloring also 

assists in ensuring this great achievement of stable networks. 

The chromatic polynomial of any Graph exists, we don’t know 

yet under what condition two graphs will have the same 

chromatic polynomial in general.  

5. Recommendation 

Open problem: what are the general conditions for two 

graphs to have the same chromatic polynomial?  
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